Explainable Performance - HEC Paris - École des hautes études commerciales de Paris Access content directly
Preprints, Working Papers, ... Year : 2022

Explainable Performance


We introduce the XPER (eXplainable PERformance) methodology to measure the specific contribution of the input features to the predictive or economic performance of a model. Our methodology offers several advantages. First, it is both model-agnostic and performance metric-agnostic. Second, XPER is theoretically founded as it is based on Shapley values. Third, the interpretation of the benchmark, which is inherent in any Shapley value decomposition, is meaningful in our context. Fourth, XPER is not plagued by model specification error, as it does not require re-estimating the model. Fifth, it can be implemented either at the model level or at the individual level. In an application based on auto loans, we find that performance can be explained by a surprisingly small number of features, XPER decompositions are rather stable across metrics, yet some feature contributions switch sign across metrics. Our analysis also shows that explaining model forecasts and model performance are two distinct tasks.

Dates and versions

hal-03897380 , version 1 (13-12-2022)





Sullivan Hué, Christophe Hurlin, Christophe Pérignon, Sébastien Saurin. Explainable Performance. 2022. ⟨hal-03897380⟩
20 View
0 Download



Gmail Facebook X LinkedIn More