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About Fuzzy Discrimination

J.-M. Gautier, C.O.R.E.F., Boulogne-Billancourt, France
G. Saporta, Rene Descartes University, Paris, France

I1 arrive souvent en analyse discriminante que 1'appartenance des individus aux
classes d'une partition de la population ne soit pas connue avec certitude, ou
qu'il soit délicat d'attribuer strictement un individu & une catégorie lorsque
la partition est définie a partir d'une variable numérique découpée en classes.
Il semble alors plus raisonnable de se donner une distribution de probabilité
sur les classes qu'une fonction booléenne d'appartenance surtout si un individu
est proche de la frontiére entre deux classes.

On établit alors les modifications & apporter aux techniques usuelles de discri-
mination (factorielle et décisionnelle) ainsi que ies conséquences de ces modi-
fications sur les indices usuels de qualité d'une discrimination.

Keywords :Fuzzy Discrimination
Discriminant Analysis

Discriminant analysis is the replicative or predictive study of a qualitative
variable over a set of predictors that are generally numerical.

In certain situations, one cannot attribute with certainty a category of the
variable to be explained to certain (even to all) individuals in the sample. This
is particularly the case if :

- The classes are poorly defined, e.g., imprecise nomenclature or else
discrete coding of a quantitative variable (1).

- The class to which an individual belongs cannot be determined with cer-
tainty, e.g., appearance of a symptomafter absorption of a medicine. There is
nothing to prove that the symptom could not have appeared naturally.

But it may also be that the determination of the class is too costly, and that
one is content with an estimate.

From the formal viewpoint, we will therefore suppose that with each individual,
there is associated a probability distribution P; (i) for the classes j = 1,. . .,
k of the variable to be explained, rather than a set of mutually exclusive indi-
cative variables.

(1) In this case, the quantitative variable being divided up into classes, an

individual in the neighborhood of the border between 2 classes probably cannot
be attributed to a single one of the classes, if only because of possible mea-
suring errors.
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We will denote by X the matrix (n, p) of the p numerical predictors, n being the
sample size

Hence we are going to describe how to extend to this situation the various
research results of discriminant analysis, i.e., seek the best separation between
the classes in the sense of a particular criterion (geometrical methods), or
attempt directly to estimate the P; (i) for every individual for which one sums

up the p predictors (Bayesian research).

For geometrical research, this extension is made by introducing weightings into

the calculations and by counting each observation i as an element of all of the

classes j for which : Pj (i) # 0. The weighting of observation i in class j is
n

then Pj(i). We note.(j - E-l pj(i) the weight of the class j.

It will be shown that in reality, it is not necessary to work on matrices of di-
mension k.n, but only n (on condition of having written the programs on an ad hoc
basis).

The various quality measures of the discrimination are affected by the fuzziness
of the classes of the variable to be explained, and for certain ones of these
criteria, we will propose a limit calculation that will make it possible to judge
the real discriminating power of a variable, or of a set of variables, relative
to this limit.

As to the bayesian methods, if one excepts the case in which one considered the
PJ(i) as a sample of a random variable, the generalization is carried out in the
same fashion as for the geometrical methods, since the only things ‘affected by
the fuzziness of the classification are the estimators of the parameters of the
conditional distributions.

However, another approach is possible : a direct search for a formula for adjust-
ment of the P; by means of explanatory variables : logistic regression or linear
regression with constrainta.

1. GEOMETRICAL METHODS

I.1 Evaluation of the center of gravity of the classes

We will denote by P; the diagonal matrix (n xn) of the Pj (i) associated with
the group j, and 1 the vector of which the n components are equal to 1.

Since the classes are fuzzy, the centers of gravity gi of each one of them are
’

obtained by taking the average, weighted by the Pj (i), of the coordinates of
the observations, hence :

T QO

I.2 Expression of the matrices of variance

The total matrix of variance would then be :

1 k 1
V= = X* P, X = = X'X-
Ly xory x -

if the data are centered
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The matrix of variance of the classe j is written

1 1
- ' _=X'P-11'P
Vj .rj (X Pj X q X Pj

3%

The intra-class matrix of variance W is then :

1} ince |
W=t §-14~3V1“‘°° j=1‘j n

Its current term is worth

1
Ul 1. =~

X
172 njy i

~YLlp (1) P, (L) )
1, *i_1,. (8 j Myt
1 s 171 22 11123 3

The inter-class matrix of variance B is therefore equivalent to :

B = &X' Lipy1 1'p) X

And its current term is :

1 1
b = X ( P. (i) P, (iy) ) x
1,1, KE i 41, )j:d.j j (0 Py (3

2 12

1.3 Calculation of the distance from a point to the center of gravity of the"
classes

Let e be a point of RP ; if the matrices V, are not significantly different, one
uses the Mahalanobis metric

w1l to calculate these distances :
¢ (eig)=(e- 1"5jx) w (g-X'P‘J 1)
=erw e 41 P:XU-I.X' !’Jl
-2 e vty Pj 1
where P, = 1?



1

3 instead of W~

If the VJ are significantly different, one applies V
(Sebestyen's method).
We perceive that these formulas hardly from those of the classic case.

Their main interest is that they supply a method of direct calculation not brin-
ging in matrices of dimension kn.

I.4 Criteria of the quality of the discrimination

The first criterion that comes to mind is the one of the percentage bf correct
classification by the method of reassignment (about which it is known, inciden-
tally, that it yields biased results). In the classic case, this percentage can
reach 100 % ; here it is quite obviously limited by :

Y max P, (1) x 100
i i J n

In the case of 2 groups, the Mahalanobis distance D2 between the two centers
often serves as a criterion for separability, in particular for the selection of
the variables, other criteria such as the F, can be deduced from it for a
monotonic transformation :

D « (g, - g))' W -1 (81 - &)

In the usual case, this distance is not bounded above and may theoretically be
infinite if and only if each group is reduced to a point projected onto straight
line g gp. Here this distance is always limited, and this limit can be calcu-
lated by the following procedure :

D2 is a maximum if, in projection on straight line g; 2% all the points such
tha Py (i) >P, (i) are confused in a point X;, and all the others in Xp. Hence
one is led back to a uni~dimensional problem on straight line g; go. Let us place
ourselves in this case. D2 being invariantfor change of radius and of scale on
the variables, one may suppose that on straight line g; gp, the total variance

is equal to 1, and that the variable is centered. From this, one deduces at

the values of X; and Xp and the value of 02, which is not zero, since the varian-
ces of each group cannot be zero if there is at least one i in which P (i) is
different from O or from 1, J

whence D2 < (& - g5)2

s

If we denote by P1 the proportion of individual i affected in group 1,
such that p, i) > P, (i)

By = \/_I_'Pl By = - \/_Pl_

4 Pl

227



228

The calculation of 02, g, and g depends on the 3 parameters : Py 8 = Z Py (i) ,
a, =2 p, (1).

In the case of k groups, a usable criterion is the sum of the Mahalanobis
distances of the groups taken two by two ; as previously, the sum of the
D2 (gJ H gl) is maximum if in the space created by the k centers of gravity,

all of the observations such that p, (i) is a maximum are projected onto the
same point Sj . One may always auppése that the observations are centeredand

that the matrix of over-all variance is I , which leads to a single-confi-

k-1
guration of the Sj neglecting an isometry. One can then calculate the criterion
that supplies the desired increase, which depends only on the distribution of
the weightings.

One concrete calculation method consists in takings any set of k points

Zy e gk and in carrying out the linear transformation that leads to the ﬁj'

II. PROBABILISTIC METHODS

II.1. Bayesian methods with hypothesis of normalit
See Aitchison andEOgg !19765.

If one makes the hypothesis of a normal distribution N (A ; :E:) in each
class, the only problem consiste in estimating the pargmet rs of the model
before applying Bayes' formula (cf. Anderson).

The estimators of the Aﬁ and of ) are precisely the &j and W
previously defined.

II.2. Direct estimation of the P‘j

Since one has a sample of P, and explanatory variables X, one may use the
regression techniques in thJ broad sense, or :

a) Logistic regression

This method reduces to supposing that Log ?il is a linear function of the
P

explanatory variables. The coefficients of these functions being estimated

then by the method of maximum likelihood (Cox's model).

b) Linear regression under constraint

One regresses each pJ on the explanatory variable while imposing the constraint
jz Pj =1 (which is easy), and the constraints gj:;o vy which leads to
p.20

J

optimization programs on cones. In other words, it is a question of carrying
out the canonical analysis between a convex cone and a vectorial sub-space.
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