Article Dans Une Revue Electronic Communications in Probability Année : 2016

A note on a Poissonian functional and a $q$-deformed Dufresne identity

Résumé

In this note, we compute the Mellin transform of a Poissonian exponential functional, the underlying process being a simple continuous time random walk. It shows that the Poissonian functional can be expressed in term of the inverse of a q-gamma random variable.The result interpolates between two known results. When the random walk has only positive increments, we retrieve a theorem due to Bertoin, Biane and Yor. In the Brownian limit (q -> 1(-)), one recovers Dufresne's identity involving an inverse gamma random variable. Hence, one can see it as a q-deformed Dufresne identity.
Fichier principal
Vignette du fichier
1406.5695v4.pdf (187.4 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-01976560 , version 1 (24-01-2025)

Identifiants

Citer

Reda Chhaibi. A note on a Poissonian functional and a $q$-deformed Dufresne identity. Electronic Communications in Probability, 2016, 21, ⟨10.1214/16-ECP4055⟩. ⟨hal-01976560⟩
43 Consultations
0 Téléchargements

Altmetric

Partager

More