Finite and infinite degree Thurston maps with a small postsingular set - Institut de Mathématiques de Marseille 2014-
Pré-Publication, Document De Travail Année : 2024

Finite and infinite degree Thurston maps with a small postsingular set

Résumé

We develop the theory of Thurston maps that are defined everywhere on the topological sphere $S^2$ with a possible exception of a single essential singularity. We establish an analog of the celebrated W. Thurston's characterization theorem for a broad class of such Thurston maps having four postsingular values. To achieve this, we analyze the corresponding pullback maps defined on the one-complex dimensional Teichmüller space. This analysis also allows us to derive various properties of Hurwitz classes of the corresponding Thurston maps.
Fichier principal
Vignette du fichier
HAL_Small_postsingular_set.pdf (507.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04727045 , version 1 (08-10-2024)

Identifiants

Citer

Nikolai Prochorov. Finite and infinite degree Thurston maps with a small postsingular set. 2024. ⟨hal-04727045⟩
27 Consultations
9 Téléchargements

Altmetric

Partager

More