Article Dans Une Revue Journal of Physical Chemistry Letters Année : 2024

Magnetic Circular Dichroism of Luminescent Triarylmethyl Radicals

Résumé

Stable triarylmethyl radicals are the most common carbon radical building blocks and have recently attracted much attention for their luminescent properties. However, magnetic circular dichroism (MCD) discovered by Michael Faraday and magnetic circularly polarized luminescence (MCPL) have not been observed for simple triarylmethyl radicals, probably due to their photodegradability. Here we report the first observation of MCD and MCPL of triarylmethyl radicals in solution using racemic mixtures of (3,5-dichloro-4-pyridyl)bis(2,4,6trichlorophenyl)methyl radical (PyBTM) and (3,5-difluoro-4-pyridyl)bis(2,4,6trichlorophenyl)methyl radical (F 2 PyBTM), which are much more photostable than simple triphenylmethyl radical derivatives. Faraday B terms, which are at the origin of magnetic dichroism in nondegenerate systems, were calculated using TD-DFT, and the line shape of MCD spectra was well reproduced. This study provides new circular dichroism properties for luminescent triarylmethyl radicals in solution without separating enantiomers and also clarifies the origin of magnetic circular dichroism properties of stable organic radicals for the first time.

Domaines

Chimie
Fichier principal
Vignette du fichier
2024 JPCL 11696.pdf (2.55 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04784323 , version 1 (15-11-2024)

Licence

Identifiants

Citer

Yohei Hattori, Daiya Suzuki, Wataru Ota, Tohru Sato, Gwénaël Rapenne, et al.. Magnetic Circular Dichroism of Luminescent Triarylmethyl Radicals. Journal of Physical Chemistry Letters, 2024, 15, pp.11696-11700. ⟨10.1021/acs.jpclett.4c02793⟩. ⟨hal-04784323⟩
29 Consultations
6 Téléchargements

Altmetric

Partager

More