Clustering multivariate functional data using unsupervised binary trees - Ensai, Ecole Nationale de la Statistique et de l'Analyse de l'Information
Article Dans Une Revue Computational Statistics and Data Analysis Année : 2022

Clustering multivariate functional data using unsupervised binary trees

Résumé

We propose a model-based clustering algorithm for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with error at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout.
Fichier principal
Vignette du fichier
2012.05973v3.pdf (6.26 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03391643 , version 1 (28-10-2024)

Identifiants

Citer

Steven Golovkine, Nicolas Klutchnikoff, Valentin Patilea. Clustering multivariate functional data using unsupervised binary trees. Computational Statistics and Data Analysis, 2022, 168, pp.article n°107376. ⟨10.1016/j.csda.2021.107376⟩. ⟨hal-03391643⟩
76 Consultations
0 Téléchargements

Altmetric

Partager

More